WAVAL MEDICAL RESEARCH INSTITUTE O O O O T BIOCHEMICAL STUDIES DURING SATURATION DIVING: A COMPARISON OF A SATURATION DIVE WITH SATURATION-EXCUPSION DIVES D.E. Uddin, R.E. Danziger, T.L. Sallee, John M. Alexander, and E.T. Flynn Project No. MF12.524.014-1005B Report No. 2 NATIONAL TECHNICAL INFORMATION SERVICE Springfield, Va 22151 RESEARCH REPORT to the following of the first terms te | Security Classification | | | |--|---|----------------| | DOCUMENT CONT | ROL DATA - R & D | | | 1 | unatation on it be entered when the overall report to the enteret, | | | NAVAL MEDICAL RESEARCH INSTITUTE | UNCLASSIFIED | Ź | | NATIONAL NAVAL MEDICAL CENTER
BETHESDA, MARYLAND 20014 | 2b SHOUP | D | | 1 REPORT TITLE | | ~ } | | BIOCHEMICAL STUDIES DURING SATURATION DIV
WITH SATURATION-EXCURSION DIVES | ING: A COMPARISON OF A SATURATION DIVE | 40 | | 4 DESCRIPTIVE NOTES (T):pe of report and inclusive dates) | 1 | | | Medical research interim report | | | | David E. UDDIN, Richard E. DANZIGER, Terr
Edward T. FLYNN | y L. SALLEE, John M. ALEXANDER and | #P | | 6 REPORT DATE | 78. TOTAL NO OF PAGES 75 NO OF REFS | | | 12 October 1971 | 44 9 | | | 80 CONTRACT OR GRANT NO | 98 ORIGINATOR'S REPORT NUMBERIS) | | | | MF12.524.014-1005B, Report No. 2 | | | 6. PPOJECT NO | 4 | | | c. | 9b OTHER REPORT NO(S) (Any other numbers that may be easign
this report) | led | | d, | | | | 10 DISTRIBUTION STATEMENT | | | | THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC
IS UNLIMITED. | C RELEASE AND SALE; ITS DISTRIBUTION | | | II SUPPLEMENTARY NOTES | 12 SPONSORIN, MILITARY ACTIVITY | | | 1 | BUREAU OF MEDICINE AND SURGERY (NAVY) WASHINGTON, D. C. | | 13 ABSTRACT A number of serum constituents were measured before, during and after one saturation-excursion dive to 300 feet of sea water (FSW), two saturation-excursion dives to 600 FSW, and one saturation dive to 1000 FSW. Significant increases in creatine phosphokinase (CPK) and lactate dehydrogenase (LDH) activity were noted on both saturation-excursion profiles, however, there were essentially no changes in serum enzyme activity during the saturation dive to 1000 FSW. On all 3 profiles, serum lactic acid was elevated with the largest increase occurring on the 1000 FSW dive. No changes were noted in the serum lipid constituents on any of hese dives. These changes in serum biochemistries are discussed in relation to the differences in environmental conditions. UNCLASSIFIED | W. W. W. D. D. | LIN | K A | LIN | кв | EIN | , c | |---|------|-----|------|----|------|-----| | KEY WORDS | ROLE | ₩Ť | ROLE | WT | ROLE | ₩. | | aturation-excursion
reatine phosphokinase
erum biochemistries
yperbarics | • | | | | | | v | ## BIOCHEMICAL STUDIES DURING SATURATION DIVI: /: بالرابية والمناب يبرد والمتاي يستويد A COMPARISON OF A SATURATION DIVE WILL! SATURATION-EXCURSION DIVES D.E. Uddin, Rr Danziger, T.L. Salles* and John M. Alexander and E.T. Flyn* *Naval Medical Research Institute Bethesda, Maryland 20014 **U.S. Navy Experimental Diving Unit Washington Navy Yard Washington, D.C. 20390 From the Bureau of Medicine and Surgery, Navy Department, Research Task No. MF12.524.014-1005B. The opinions or assertions contained herein are the private ones of the authors and are not to be construed as official or reflecting the views of the Navy Department or the Naval service at large. #### SUMMARY A number of serum constituents were measured before, during, and after one saturation-excursion dive to 300 feet of sea water (FSW), two saturation-excursion dives to 600 FSW, and one saturation dive to 1000 FSW. Significant increases in creatine phosphckinase (CPK) and lactate dehydrogenase (LDH) activity were noted on both saturation-excursion profiles, however, there were essentially no changes in serum enzyme activity during the saturation dive to 1000 FSW. On all 3 profiles, serum lactic acid was elevated with the largest increase occurring on the 1000 FSW dive. No changes were noted in the serum lipid constituents on any of these dives. These changes in serum biochemistries are discussed in relation to the differences in environmental conditions. #### INTRODUCTION In a recent report, we described the results of extensive serum biochemical analysis on divers during two 600 FSW* saturation dives (1). The major changes observed were an increase in serum CPK activity and serum lactate. Others have reported decreases in serum glucose during saturation exposures (2,3). To extend these observations, similar studies were performed during a saturation-excursion dive to 300 FSW and a saturation dive to 1000 FSW. Complete results on these analyses are compared in this report as the basis for future studies. ^{*}Abbreviations used in this manuscript: FSW = feet of sea water, CPK = creatine phosphokinase, SGOT = glutamate oxalacetate transaminase, LDH = lactate dehydrogenase, AUS PHOS = alkaline phosphatase #### METHODS All dives were conducted in the hyperbaric chamber complex of the Navy Experimental Diving Unit, Washington, D.C. A total of 16 Navy divers, ranging in age from 23 to 37 were studied. The following dives were performed: - A. Four subjects were compressed on a mixture of helium and oxygen in the dry chambor to a simulated depth of 300 FSW at an integrated rate of 40 feet/hour (Figure 1). During the subsequent six days at 300 FSW, each subject made three excursion dives per day in the wet tank to depths ranging from 350 to 450 FSW and for exposure times ranging from 20 to 120 minutes. Compression and decompression during these excursion dives was performed at a rate of 60 feet/minute. Decompression from the saturation depth of 300 FSW followed the standard U.S. Navy format (Table I). - B. Eight subjects, four on each of two successive dives, were compressed to a simulated depth of 600 FSW on a mixture of helium and oxygen in the dry chamber at an integrated rate of 40 feet/hour (Figure 2). During the subsequent six days at the saturation depth, each diver made three excursion dives per day in the wet tank to depths ranging from 650 to 750 FSW and for do at ions ranging from 20 to 120 minutes. Compression and decompression rates during these excursions were at a rate of 60 feet/minute. Decompression from the saturation depth of 690 FSW followed the standard U.S. Navy format. (Table I) C. Four subjects were compressed at a rate of 5 feet/minute on a mixture of helium and oxygen to an ultimate saturation depth of 1000 FSW (figure 3). During compression, three day intermediate stops were made at 200, 400, 600, and 800 FSW. Four days were spent at the saturation depth of 1000 FSW. Decompression was performed in accordance with Table I, with the exception of a 24 hour stop at 850 FSW to permit physiologic studies. During these deep helium-oxygen dives, the chamber atmosphere was monitored continuously for oxygen and carbon dioxide content, temperature, and relative humidity. Oxygen concentration was maintained between 0.29 and 0.35 atmospheres, carbon dioxide content was not allowed to exceed 0.5% surface equivalent, temperature ranged from 80 to 89°F, and relative humidity from 50 to 70%. The water temperature in the west tank was maintained between 85 and 90°F. Deviations from these limits occurred only during rapid compression and decompression. In all dives, the divers performed moderate work by swimming against a trapeze ergometer and by lifting weights on a ten minute work, five minute rest sycle. Complete descriptions of these dive profiles have been published elsewhere (4,5). Fasting blood samples were obtained by venipuncture at 0700 hours on the days indicated (Fig. 1-3). The blood samples drawn at increased ambient pressure were decompressed at 15 feet/minute. After clotting, samples were centrifuged and the serum was withdrawn. Prior to centrifugation, samples were stored in an ice bath. Serum hemoglobin was measured to eliminate samples that had concentrations greater than 15 mg%. Analysis of serum was performed as previously described (1). Serum glutamate-oxalacetate transaminase and alkaline phosphatase were measured with commercial reagent kits manufactured by Warner Chilcott and Boehringer Mannheim, respectively.* ^{*}Mention of commercial products is for purposes of clarity and should not be construed as an endorsement. #### RESULTS In order to present a coherent picture of the varied indices measured, the results are presented in two forms. In Figres 4 and 5 and in Table II are summarized those results which showed either a similarity or a difference between the two types of dive profiles. In the Appendices B-D, results are tabulated by individual diver. At this point, not all of these results can be explained, but in one case certain of the changes were apparently due to the onset of mumps during the exposure (6). Figure 4 summarizes the results of serum CPK analysis obtained on all 3 profiles. It is readily apparent that the results on the three saturation-excursion dives, one at 300 FSW and two at 600 FSW, are qualitatively and quantitatively similar. Midway through the excursion phase of the dive, a 10-fold increase in mean CPK activity was observed which returned to baseline during decompression. A slight increase was apparent one or two days post-dive. In contrast, the mean CPK level fluctuated within control levels throughout the 1000 FSW dive. Lactate dehydrogenase showed a similar, but not as large increase as CPK. Glutamate-exalacetate transaminase and amylase activities did not appear to change as a result of the hyperbaric exposure. Serum lactic
acid levels increased during the bottom time on the 600 and 1000 foot profiles (Figure 5). The elevation was correlated to some extent with the depth, the greatest elevation being observed at the 1000 FSW depth. Serum glucose was depressed slightly during the hyperbaric exposure at 600 FSW (Table II). As in the other biochemical determinations, the changes were transient and returned to baseline during the decompression. The other biochemistries measured, including lipoprotein distribution, neutral lipid distribution, and phospholipid distribution, did not change as a result of hyperbaric exposure (Appendices B-D). #### DISCUSSION To discuss the changes observed on these dives adequately, it is necessary to define all the stresses that could affect the divers. During all dives, there is a psychological component that will vary from individual to individual, depending on experience, attitude and the type of dive being performed. Although some changes in the biochemical constituents of serum have been attributed to psychological stresses (7), we have either not measured these constituents or not attempted to correlate psychological stress with the changes observed. Instead, we have tried to correlate those changes with the physical stresses encountered and to determine the usefulness of serum chemistries in assessing the severity of these physical stresses. The identification of the stresses as entities is not difficult. However, the combination of one stress followed by two or more others concurrently is more difficult to interpret. The individual parameters would be rate and extent of compression, exercise, excursion dives, including both compression and decompression, immersion and finally decompression. The 1000 FSW dive eliminated several of these variables completely and minimized others. The compression rate was, for example, slow (in 200 foot increments) and there were no excursions providing repetitive cycles of compression and Jecompression. In contrast, the exercise level on the 1000 foot dive was much greater than on the 300 and 600 FSW dives reported earlier. Additionally, the duration was longer and the final saturation pressure was deeper. Of the serum constituents measured, the biggest contrast between the 1900 FSW saturation dive and the 300 and 600 FSW saturation-excursion dives was in serum CFK activity. While in the saturation-excursion dives the mean CPK level increased tenfold during the bottom phase of the dive, there was no change in CPK in any of the samples on the saturation dive. During the bottom time, divers on the 300 and 600 FSW dives were exposed to several wet excursion cycles daily. No changes in CPK activity were seen in any of the three profiles in the sample obtained 24 hours after the start of compression. Compression, at the rate performed on these dives, presumably cannot account for the subsequent elevations in the serum CPK. Additionally, exercise at high pressure does not seem to be a contributing factor since the amount of exercise was much greater on the 1000 foot dive where no changes were observed. CPK activity. Of all the stresses that have been ddentiffed, distinguished, only the repeated cycle of compression and decompression during the excursions would seem responsible for the increased CPK. To test this hypothesis further, it would be necessary to perform similar analyses on non-saturation dives repeated several times daily. Additionally, saturation dives to 600 FSW without excursions or exercise would lend insight into the causative stress. An increased level of serum enzyme is generally attributed to tissue damage resulting in release of cellular enzymes into plasma. Analysis of one or several enzymes can frequently identify the tissue damaged. CPK is an enzyme which is primarily present in cardiac and skeletal muscle. It seems logical, therefore, that elevations in this enzyme activity in serum are a result of trauma to either cardiac or skeletal muscle. It further suggests that, although no clinical signs of decompression sickness were observed, repeated stress caused sufficient damage to skeletal and/or cardiac muscle to result in an elevation in serum levels of CPK. Serum LDH activity also increased similarly to CPK. However, the magnitude of the change was much ess. LDH isoenzyme distribution was not significantly influenced by this change. This was not unexpected as the total activity remained within a "normal" range. The elevations of serum lactic acid levels may represent a combination of several effects. Although exercise can produce elevations of serum laccate, it is unlikely that an elevation would persist during the six hour overnight rest period. Increased lactate production could also result from increased glycogenolysis subsequent to epinephrine secretion. However, secretion of epinephrine generally raises both lactate and glucose levels in blood. Since we noted an apparent decrease in serum glucose, it would seem that epinephrine could not be the sole determinant in elevating serum lactate. Other possible metabolic alterations that could account for increased lactate include tissue hypoxia. Tissue hypoxia would result in increased lactate production concomitant with oxidization of reduced pyridine nucleotides. The bradycardia noted by Salzano (9) on deep dives could cause such a relative tissue hypoxia by reducing muscle blood flow. Both blood flow measurements and arterial oxygen content measurements at depth would be desirable to further examine these possibilities. One further explanation is that the time between venipuncture and separation of serum was sufficient to allow substantial production of lactic acid by erythrocytes. The blood samples were placed immediately into an ice bath to slow metabolic reactions, but no metabolic inhibitors were used in order that the greatest number of constituents could be measured. With this observation, future studies should be designed to have either (a) in-chamber separation of serum, or (b) in-chamber precipitation of whole blood. The measurement of serum pyruvate would give further insight into these possible mechanisms. The decrease in glucose observed on this dive is similar to that observed by Vorosmurti, et al. (3,4). That is, all in-dive samples were lower than baseline, but still within a clinically acceptable range. These authors noted no pressure dependence in this phenomenon at depths up to 600 FSW, nor did we at depths up to 1000 FSW. Future investigations should be aimed at confirming this observation and attempting to determine the cause. Since serum glucose is significantly affected by hormonal control, the underlying mechanism could be a change in hormone secretion as a response to stress. In summary, of the various constituents monitored during these exposures, three appear to suggest alterations in the physiological status of the diver. Increase in creatine phosphokinase suggests that either overt tissue damage occurred, or that the permeability of muscle membrane to CPK increased. The increases in lactic acid concentration and decrease in glucose concentration suggest altered carbohydrate metabolism during hyperbaric exposure. Although the changes observed do not suggest that overall performance or safety are endangered, they have provided the basis for subsequent investigations (8). # ACKNOWLEDGEMENTS The authors wish to express their appreciation to the many Navy divers and technicians whose cooperation was essential for the completion of this work. Portions of this work were conducted under Research Task No. M4306.02-4010BDK9. #### REFERENCES - Uddin, D.E., T.L. Sallee, R.E. Danziger, E.M. Neptune, Jr., J.M. Alexander, E.T. Flynn, and J.K. Summitt: Biochemical Studies during Saturation Diving: A Report of Two Exposures at 19.2 Atmospheres Absolute with Excursions to 23.7 ATA. Aerospace Med. 42: 756-762 (1971). - Vorosmarti, J., Jr., M.E. Bradley, P.G. Linaweaver, Jr., J.C. Kleckner, and F.W. Armstrong: Helium-Oxygen Saturation Diving: I. Hemotologic, Lactic Acid Dehydrogenase, and Carton Monoxide-Carboxyehmoglobin Studies. Aerospace Med. 41: 1347-1353 (1970). - Vorosmarti, J., Jr., M.E. Bradley, P.C. Linaweaver, Jr., J.C. Kleckner, and F.W. Armstrong: Helium-Oxygen Saturation Diving: II. Serum Chemistries and Urinalysis. Aerospace Med. 42: 16-19 (1971). - 4. Summitt, J.K., J.M. Alexander, and E.T. Flynn: Repetitive Excursion Dives from Saturated Depths on Helium-Oxygen Mixtures. Research Report 7-70, 23 September 1970. Experimental Diving Unit, Washington, D.C. 20390. - 5. Summitt, J.K., J.M. Alexander, and E.T. Flynn: Repetitive Excursion Dives from Saturated Depths on HeliumOxygen Mixtures. Research Report 8-70, 23 September 1970. Experimental Diving Unit, Washington, D.C. 20390. - 6. Danziger, R.E., T.L. Sallee, D.E. Uddin, J.M. Alexander, and E.T. Flynn: A Case of Mumps during Hyperbaric Exposure. Aerospace Med. (in press). - 7. Rubin, R.T., R.H. Rahe, B.R. Clark, and R.J. Arthur: Serum Uric Acid, Cholesterol and Cortisol Levels. Archiv. Int. Med. 125: 815-819 (1970). - 8. Uddin, D.E., J.M. Alexander, and E.T. Flynn: Chauges in Serum CPK Activity during Simulated Dives. (In Preparation) - 9. Salzano, J., D.C. Rausch, and H.A. Saltzman: Cardiorespiratory Responses to Exercise at a Simulated Seawater Depth of 1,000 Feet. J. Appl. Physiol. 28: 34-41 (1970). TABLE I # RATE OF DECOMPRESSION FROM SATURATION EXPOSURES ON HELIUM-OXYGEN | DEPTH
(Feet Sea Water) | RATE*
(Feet per Hour) | |---------------------------|--------------------------| | Initial 30 foot ascent | 10 | | 1000 - 200 | 6 | | 200 - 100 | 5 | | 100 - 50 | 4 | | 50 - Surface | 3 | ^{*} Decompression is interrupted daily between 1400 and 1600 hours and between 0000 and 0600 hours. TABLE II SERUM GLUCOSE LEVELS DURING HYPERBARIC EXPOSURE | Sample | 300 FSW
Dive | 600 FSW
Dive | 1000 FSW
Dive | |---------------|---------------------|----------------------|--------------------| | Pre Dive | 81 ± 15 (8)' |
105 <u>+</u> 11 (24) | 101 ± 11 (15) | | Bottom | 86 <u>+</u> 6 (12) | 97 <u>+</u> 14 (33) | 99 <u>+</u> 9 (32) | | Decompression | 88 <u>+</u> 10 (16) | 94 <u>+</u> 7 (29) | $100 \pm 7 (16)$ | | Post Dive | 89 <u>+</u> 13 (4) | 103 <u>+</u> 12 (17) | 190 <u>+</u> 6 (7) | $[\]ddot{x} + S. D. (N)$ FIGURE 1 Profile of 300 FSW saturation-excursion dive. Triangles indicate days on which blood samples were obtained. FIGURE ? Profile of 600 FSW saturation-excursion dive. Triangles indicate days on which blood samples were obtained. FIGURE 3 Profile of 1000 F5W saturation dive. Triangles indicate days on which blood samples were obtained. #### FIGURE 4 Serum CPK Levels during Hyperbaric Exposure Each point represents the mean ± 1 S.D. for all divers on that dive. The shaded area is the mean ± 1 S.D. for all pre-dive control values. A, B, and C are the 300 FSW saturation-excursion dive, the 60G FSW saturation-excursion dive, and the 1000 saturation dive, respectively. ## FIGURE 5 Serum Lactic Acid Levels during Hyperbaric Exposure Each point represents the mean + 1 S.D. for all divers on that dive. The shaded area is the mean + 1 S.D. for all pre-dive control values. A, B, and C are the 300 FSW saturation-excursion dive, the 600 FSW saturation-excursion dive, and the 1000 FSW saturation dive, respectively. APPENDIX A DESCRIPTIVE PHYSICAL DATA ON DIVERS | NAM | E | AGE | HEIGHT | WEIGHT | CLASS YEA | ARS OF EXPERIENCE | |-----|---------------------|------------|--------------|---------|-----------|-------------------| | Α. | 300 FSW 9 | Saturation | Excursion Di | ve | | | | | Gramm | 29 | 64 | 159 | lst | 6 | | | Medina | 26 | 66 1/2 | 175 | 1st | 5 | | | Evans | 33 | 70 | 187 | 1st | 5
1
2 | | | Conyers | 23 | 70 3/4 | 157 | 1st | 2 | | В. | 600 FSW : | Saturation | Excursion D | ive | | | | | Gray | 37 | 71 1/2 | 169 | 1st | 12 | | | Larimore | 27 | 66 1/2 | 230 | lst | 3 1/2 | | | Miller | 27 | 69 | 197 | 1st | 3 | | | Wilson ¹ | 32 | 72 1/2 | 200 | 1st | 3
8
5
5 | | | Eubanks | 23 | 74 | 224 | ls: | 5 | | | Guzicki | 27 | 73 1/4 | 195 | 1st | | | | Lewis | 36 | 67 | 191 3/4 | 1st | 6 | | | Roan | 31 | 64 1/2 | 162 | 1st | 5 | | c. | 1000 FSW | Saturation | n Dive | | | | | | Alexande | r 30 | 7 3 | 210 | smo^2 | 2 | | | Brown | 32 | 71 | 186 | lst | 5 1/2 | | | Majendie | 36 | 67 1/2 | 175 | Officer | 6 | | | Guzicki | 27 | 73 1/4 | 195 | 1st | 5 | Diver who developed mumps after compression Submarine Medical Officer # APPENDIX B Individual Summaries of Serum Biochamistries by Diver for 300 FSW Saturation-Excursion Dive | Determination | | 1
1-14-70 | PRE -DIVE 2 3 1-20-70 1-26-70 | ъ
3
1-26-70 | 4
1-27-70 | BOTTOM
5
1-30-70 | 6
2-3-70 | DECC
7
2-5-70 2 | DECOMPRESSION 8 9 70 2-7-70 2-1 | 10N
9
2-11-70 | POST -DIVE
10
2-13-70 | |---|-------------------------------------|------------------------------------|-------------------------------|---------------------|---------------------------|--------------------------|----------------------------|-----------------------|---------------------------------|---------------------|-----------------------------| | CPK
Amylase
LDH Total | (units) 7
(units) 9
(units) 6 | 72
90
64 | | 77
118
70 | 30
89
80 | 331
100
85 | 110
72
78 | 36
106
58 | 47
111
72 | 88
204
73 | 72
182
102 | | Distribution of LDH isoenzymes LDH-1 32 LDH-2 28 LDH-3 (%) 27 LDH-4 7 LDH-5 6 | on of LDH | isoenz
32
28
27
7
6 | zymes | 24
33
28
8 | 31
30
26
10
4 | 35
31
25
9
3 | 32
32
38
38
39 | 23
32
27
15 | 24
34
31
6 | 29
33
4
4 | 23
32
2
2 | | Haptoglobin (mg%)
Glucose (mg%)
Lactate (mg%) | | 113
87
21 | 111 | 143
65
18 | 140
84
19 | 161
82
15 | 132
94
20 | 122
107
14 | 154
104
27 | 161
93
26 | 96
20 | | Distribution of lipoproteins Alpha Pre-Beta (%) 30 Beta | on of lipo
2
(%) 3 | oprotei
21
30
50 | ins
 | 39
20
41 | 34
34
37 | 37
33
42 | 33
27
40 | 26
13
62 | 37
15
48 | 32
30
37 | 20
31
49 | DIVER: Conyers | Determination | | 1 | PRE-DIVE
2
1-20-70 | E
3
1-26-70 | 4 1-27-70 | BOTTOM
5
1-30-70 | 6
2-3-70 | DE
7
2-5-70 | DECOMPRESSION
8 9
70 2-7-70 2-1 | 10N
9
2-11-70 | POST_DIVE
10
2-13-70 | |---|------------------------------------|---------------------------------|------------------------------------|--------------------------|---------------------|---------------------------|---------------------|--------------------------|---------------------------------------|--------------------------|----------------------------| | CPK (u
Amylase (u
LDH Total (u | <pre>(units) (units) (units)</pre> | 27
154
46 | 44
178
53 | 52
72
52 | 39
124
56 | 347
127
84 | 138
118
84 | 53
106
45 | 56
111
67 | 52
146
65 | 110
200
49 | | Distribution of LDH isoenzymes LDH-1 34 23 LDH-2 30 33 LDH-3 (%) 23 30 LDH-4 6 4 LDH-5 7 10 | n of LDi | H 1soen;
34
30
23
6 | zymes
23
33
30
4
10 | 37
26
25
7
5 | 37
28
22
9 | 34
28
24
10
4 | 28
34
30
3 | 34
32
26
7
4 | 33
32
26
7
3 | 35
32
24
7
2 | 29
35
28
8 | | Haptoglobin
Glucose
Lactate | (mg%)
(mg%)
(mg%) | 118
86
13 | 115
88
11 | 97
60
17 | 129
86
21 | 111
82
19 | 102
72
21 | 104
90
14 | 132
86
17 | 102
73
14 |
71
12 | | Distribution of lipoproteins Alpha 34 Pre-Beta (%) 27 Beta | (%) | poprote:
34
27
39 | ins
36
19
45 | 36
26
39 | 39
24
37 | 27
38
• 25 | 30
31
39 | 20
15
52 | 38
25
38 | 39
25
27 | 22
34
45 | DIVER: Gramm | Determination | 1
n 1-14-70 | PRE DIVE
2
1-20-70 1 | Æ 3
1-26-70 | 1-27-70 | BOTTOM
5
1-30-70 | 6 2-3-70 | DE(| DECOMPRESSION
8 9
70 2-7-70 2-1 | ION
9
2-11-70 | POST -DIVE
10
2-13-70 | |---|--|--|----------------------------|---------------------|------------------------|--------------------------|---------------------------|---------------------------------------|---------------------|-----------------------------| | CPK (un
Amylase (un
LDH Total (un | (units) 21
(units) 118
(units) 46 | 34
142
55 | 31
72
66 | 15
115
57 | 464
72
93 | 75
109
68 | 40
115
44 | 46
93
56 | 49
129
47 | 64
200
61 | | Distribution of LDH-1 LDH-2 (%) LDH-4 LDH-4 LDH-4 LDH-5 | LDH
28
33
26
7 | isoenzymes
22
34
24
10
10 | 13
35
26
16
10 | 32
30
24
9 | 26
29
34
9 | 28
32
27
8
5 | 29
33
22
12
4 | 26
31
28
10
4 | 28
33
27
9 | 27
36
31
3 | | Haptoglobin (mg%)
Glucose (mg%)
Lactate (mg%) | (mg%) <u>222</u>
(mg%) 96
(mg%) 16 | 261
102
24 | 211
67
28 | 226
35
25 | 207
96
24 | 236
92
45 | 204
95
34 | 229
88
38 | 229
81
49 |
89
22 | | Distribution of lipoproteins
Alnha
Pre-Beta (%) 10 19
Beta | n of lipopro
47
(%) 10
44 | teins
40
19
41 | 48
15
37 | 44
23
33 | 41
14
45 | 48
16
36 | 32
24
51 | 44
10
47 | 42
20
38 | 31
10
59 | DIVER: Medina | | " | PRE -DIVE | ب
ا | 4 | BOTTOM
5 | 9 | DE(| DECOMPRESSION | NOI | POST -DIVE | |--|---------------------------------------|-----------------|---------------------|--------------------------|--------------------------|--------------------------|---------------------|--------------------------|-------------------------|------------------------------| | Determination | 1-14-70 | 1-20-70 1-26-70 | 1-26-70 | 1-27-70 | 1-30-70 | 2-3-70 | 2-5-70 | 2-7-70 | 2-11-70 | 2-13-70 | | CPK (units)
Amylase (units)
LDH Total (units) | 23 | | 48

55 | 32
160
69 | 177
136
80 | 103
100
68 | 96
160
108 | 63
149
57 | 62
139
44 | 108
209
47 | | Distribution of LDH isoenzymes LDH-1 39 LDH-2 26 LDH-4 7 7 LDH-5 6 | LDH isoer
39
26
22
7
7 | nzymes
 | 29
34
27
5 | 32
28
24
8
9 | 32
33
27
7
2 | 31
32
26
8
4 | 28
32
27
8 | 27
33
28
7
5 | 36
33
3
3
3 | 32
32
4
4
4
4 | | Haptoglobin (mg%)
Glucose (mg%)
Lactate (mg%) | 85 | | 75 | 93
86
28 | 90
84
17 | 74
90
22 | 75
80
19 | 86
79
16 | 72
86
28 |
101
27 | | Distribution of lipoproteins Alpha Pre-Beta (%) 20 Beta | 11poprote
28
20
53 | eins

 | 34
16
50 | 42
22
36 | 26
34
40 | 35
19
46 | 32
24
51 | 27
20
48 | 34
20
46 | 35
12
54 | #### APPENDIX C # Individual Summaries of Serum Biochemistries for 600 FSW Saturation-Excursion Dive # Abbreviations of Neutral Lipids: TG = triglyceride CE = cholesterol esters ## Abbreviations of Phospholipids: LPC = lysophosphatidyl choline SPH = sphingomyelin PC = phosphatidyl choline PI = phosphatidyl inositol PE = phosphatidyl ethanolamine PC = glycerol CA = cardiolipin PA = phosphatidic acid | | | | 1 | S ROSS | | | | * | · | •1 | • | آ | | - | | æ | | | Î | | | - | | - | | • | | | _ | | _ | | -4. | | |
 | | u-a | ٳٞ | |--------|---------------|------|---------------|--------------------|-----------
----------|--------------------|------------|----------|------------|-----|-------|----|---------------|---------------|---------|-----------|--------------|-------------|-------------------------|---------------|------------------|------------------|---------------|-------|-------------------------------|--------------|------------|------------|----------|------------|--------------|------------|----------------|----|------------------------------|------------|------------|----| | | | 14** | 1 | 811 | 4 | | 90 | <u>۾</u> | 24
26 | 5 4 | ~ | t | œ | 185 | ! | 1 | 1 | | | | ! | | 1 | ! | | | | 1 | 1 | | 1 | į | ļ | | | 41 | 20 | 04 | | | | | 13 | - | 27
50 | 4 | | ć | 97 | 37 | 54 | S | ٥ | œ | 175 | 00
12 | , c | 1429 | 150 | | | k
1
1 | ! | | ! | | |
 -
 - | | 1 | 1 | ļ | 1 | | | : | 7,6 | o o | 5 2 | ì | | | | 12 | 27_77 | 25
112 | 87 | | , | 30 | 35 | 22 | 4 | 4 | œ | 208 | 107 | 26. | 1021 | 144 | | | ļ | ! | ! | 1 | | • | 13 | 23 | 51 | ! | ď | , | ! | | | 3 | 3 9 | 27 | i | | | | 11 | - 1 | 16
195 | 64 | | (| 29 | 34 | 26 | 9 | م | 7 | 576 | 110 | 7 7 7 | 1613 | 165 | | | 7 | 9 | 23 | 1 | 68 | | σ | 23 | 62 | m | ۷ (|)

 - | | ! | 1 | , |) [| 3 6 | ; | | | DECOMPRESSION | 10 | CT-71 | 16
166 | 4 | | | 36 | 30 | ဓ္က | 00 | 8 | œ | 264 | 101 | 2 6 | 0.06 | 128 | | | ı | 7 | 18 | 7 | 72 | | 10 | 77 | 55 | | a | b | |

 | | ć | 7 00 | 07 |) | | | DECOME | 9 ; | 17-13 | 21
153 | 29 | | | ဓ္က | 35 | 56 | 9 | 3 | 1 | • | 90 | 7 C | 7,7 | 142 | | | Н | 4 | 16 | 7 | 77 | | 11 | 20 | 5 | | 7 | 0 | |
 | | č | 7 6 | 7 c | ככ | | | | æ ; | 17-71 | 66 | 73 | | | 5 6 | 32 | 35 | | 4 | 00 | 366 |)
()
() | T 1 | 100 | 138 | | | 7 | 7 | 1.1 | 7 | 73 | | 6 | 26 | 51 | . « | י ר | n | !
! |
 | | į | 4 6 | 3 6 | 7 | | , | | 7 . | 12-9 | 275
152 | 3 | | | 18 | 31 | 42 | | 4 | œ | 0 7 | 0 0 | 7 T | 5 5 | 1/8 | <u> </u> | | 7 | S | 18 | 7 | 73 | | 00 | 23 | 24 | , < | s c | œ | 1 | | | | <u> </u> | 0 % | 1 | | | TOM | * 6 | 12-7 | 920
152 | 941 | | | 7 | 37 | 07 | . 4 | 2 | α | ,, | 7 6 | y , | 57 | 1 1 0 | 3 | | 7 | 7 | 17 | 7 | 72 | | σ | 27 | ; Z | •
• | | n | 1 | | 1 | ! | 37 | 97 | , | | | BOTTOM | 2,6 | 12-5 | 145
195 | 93 | | | 25 | 28 | 2 |) œ | 4 | | | | | | 991 | ł | | - | 11 | 20 | 7 | 29 | | 7 | . 2 | 7 | 3 | ; | Λ | | | | | 77 | <u>.</u> | | | | | 4 | 12-2 | 38
275 | 67 | <u> </u> | | 27 | 20 | 26 | ? = | 17 | α | 107 | 1/3 | 119 | 7.7 | 1108 | 7/0 | | | 1 | | ļ | 1 | | - | 1 0 | 2 6 | 1 | 1 (| 10 | | | | | 43 | 87 S | | | | | ຕູ່ | 12-1 | 43
330 | 67 | | | 37 | 29 | 26 | 2 ! | 8 | | œ | 162 | 117 | 12 | 1394 | 197 | | ,- | ı ~ | -
-
-
- | <u>ب</u> د | 7 | | , | 2 ; | 77 | 22 | ŀ | œ | ; | 1 | 1 | | 94 | 28 | | | | PRE | 7 | 11-26 | 63 | 47 | | | 35 | 20 | <u>ج</u> | ; ; | | | œ | 169 | 118 | 12 | 1694 | 187 | | 1 | | | i | | | ŗ | 4 2 | 77 | 26 | 4 | œ | 1 | ł | 1 | | 94 | 21 | | | | | m | 11-24 | 128
120 | 67 | | mes | 31 | 27 | 29 | ì ∞ | 4 | | م | 169 | 119 | 10 | T)1292 | 216 | Lipids | | ء بد | 5 | , , | 72 | olipids | 1 1 1 1 1 | , c | C 7 | 8 | ന | 7 | ! | ! | ; | oteins | 41 | 54 | | | Wilson | | 0,1 | ation DATE | ¹ H. H. | 1 (units) | | tion of Isoenzymes | Ħ | 2 | ~ | 7 | 5 | | _ | | (mg%) | | Acids (umol/ | rol (mg%) | Distribution of Neutral | Monoelwoeride | Free Fatty Acids | | Distriction |)E | Distribution of Phospholipids | | | | | | | | | | Distribution of Lipoproteins | IA. | PRE-BETA | | | DIVER: | ł | | Determination | CPK
Amylase | LDH Total | | Distribution of | LOH-1 | LDH-2 | (%) LDH-3 | | LDH-5 | | Total Protein | Haptoglobin | Glucose | Lactate | Free Fatty | Cholesterol | Distribu | Mono | Free | Chol | | TG/CE | Distribu | | LFC | NA L | | (%) PI | PE | PG | CA | PA | Distribu | ALPHA | (%) PRE- | | ^{*} Acute phase specimen ** Convalescent specimen | | | | | | • | • | | • |---------------|--------------------------------|------------|-------------------|----------------------------------|------------------|--------|-------|---------------------|------|---------------|---------------|------------|-------------------|--------------------------------|--------------|------------------|-----------------|-------------|-------|-------------------------------|-----|----------|-----------|--------|------------|----------|------------|----|------------------------------|-------|--------------|------| | <u>د</u>
- | 1-30 | 63
72 | 81 | 32 | 23 | ۲ | 2 | œ | 193 | 103 | 28 | 225 | 662 | | 4 | H | 14 | -1 | 81 | | 0 | 20 | 54 | 4 | 10 | ! | m | 1 | | 24 | 37
39 | 2 | | POST | 1-26 | 55
72 | 09 | 34 | 7 9 | Ŋ | 4 | 7 | 186 | 106 | 28 | 789
187 | 0 | | 7 | σ | 19 | Ч | 20 | | 7 | 20 | 51 | ന | 15 | Í | ന | 1 | | 35 | 8
8
8 | 7 | | ; | 1-23 | 63
117 | 83 | 22 | 5
7
8 | 10 | 10 | œ | 193 | 106 | 16 | 870 | 7007 | | H | 12 | 18 | H | 6.8 | | 4 | 22 | 20 | œ | 10 | - | ന | 3 | | 34 | 77
77 | 5 | | | 1-22 | 59
100 | 74 | 28 | 25 | 6 | 8 | 7 | 204 | 104 | 24 | 818 | 7/7 | | 7 | 14 | 16 | 7 | 67 | | Ŋ | 22 | 22 | 4 | ∞ | , | 7 | 4 | | 31 | 44
70 | 77 | | ESSIO. | ,
1–20 | 1 1 | | 1 1 | | 1 | 1 | ; | 1 | 1 | ! | ; | | | 1 | ! | ł | 1 | 1 | | | 1 | ì | ; | 1 | ļ | 1 | ; | | ! | | | | DECOMPRESSION | 8
1-18 | 55
104 | 8 | 33 | 21 | 7 | 10 | 6 | 193 | 98 | 32 | 764 | 24 | | 7 | 9 | 17 | 7 | 77 | | œ | 19 | 21 | 2 | 13 | Н | 7 | 1 | | 25 | 34 | 74 | | • | ,
1–15 | 85
100 | 99 | 25 | 7
7
7
8 | 7 | 7 | œ | 168 | 86 | 36 | 908 | 507 | | 4 | 12 | 20 | ო | 61 | | σ | 54 | 52 | က | σ | ; | i | 1 | | 33 | 788 | 2 | | | 6
1-14 | 51
163 | 09 | 36 | 22 | 5 | 8 | 7 | 183 | 76 | 32 | 1025 | 761 | | ო | 16 | 22 | ო | 57 | | 7 | ; | 61 | ო | 19 | 7 | œ | - | | 27 | 28 | 40 | | BOTTOM | ے
1–10 | 175
124 | 67 | 21 | 30 | 7 | 13 | œ | 197 | 88 | 30 | 1014 | 77 | | 7 | 11 | 21 | 4 | 62 | | 7 | 18 | 28 | - | σ | ! | ო | 3 | | 23 | 33 | tt | | Δ. | 4
1-7 | 48
125 | 56 | 6. c | 3t
26 | ر
ا | 2 | œ | 172 | 84 | 38 | 1211 | 218 | | ļ | i
i | i | ì | 1 | | 1 | ! | ł | ; | ł | } | 1 | - | | 33 | 32 | 35 | | , | 3
1-6 | 53
72 | 56 | 29 | 31
25 | j 6 | 9 | œ | 179 | 104 | 170 | 626 | 777 | | 7 | 10 | 21 | m | 65 | | 2 | 21 | 09 | ! | 11 | ł | ო | 1 | | 30 | 31 | χ | | PRE | 2
12–29 | 60 | 48 | 32 | 28
28 | 9 | 3 | ∞ | 200 | 108 | 56 | 2073 | | | ; | 14 | 15 | 4 | 29 | | 1 | ¦ | ! | !
1 | ļ | ; | ł | ļ | | 32 | တ္က ဗို | 22 | | , | 1
12-22 | 30 | 48 | 34 | ر
م
م
م | ; | m | ø | 158 | 95 | 17 | 1440 | 156 | ipids. | . ; | 7 | 17 | 2 | - 74 | .pids | σ | 16 | 97 | 4 | 14 | 1 | 2 | 4 | ins | 26 | 777 | 30 | | | SAMPLE
Determination DATE 1 | - जन्म | LDH Total (units) | Distribution of Isoenzymes LDH-1 | (%) LDH-3 | | LDH-5 | Total Protein (Gm%) | obin | Glucose (mg%) | Lactate (mg%) | Aci | Cholesterol (mgk) | Distribution of Neutral Lipids | Monoglycerid | Free Fatty Acids | (%) Cholesterol | Diglyceride | TG/CE | Distribution of Phospholipids | LPC | SPH | PC | (%) PI | ਜ ਼ | PG | C A | PA | Distribution of Lipoproteins | ALPHA | (%) PRE-BETA | BEIA | | 4 | |----------| | | | ¥ | | | | U | | | | ᆔ | | N | | コ | | gr | | | | | | ٠. | | ۳:
ع: | | ER: | | | | IVER: | | 1,100 | - | PRE | ć | | NOLLON | | | ECOMP | ESSION | | | POST | | | |-------------------------------|-------------|--------------|--------------|----------|------------|------------|------------|----------------|--------------------|---------------------|-------------|-------------|------------|---| | SAMFLE
Determination DATE | 1
12-22 | 2
12–29 | 3
1-6 | | 5
1–10 | 6
1-14 | /
1–15 | 8
1-18 | 8 9
1-18 1-20 1 | 10
1 - 22 | 11
1-23 | 12
1-26 | 13
1-30 | | | CPK (units) | 24 | 23 | 07 | | 120 | 36 | 34 | 31 | 34 | 32 | | 36 | 09 | | | ase | 40 | 98 | 22 | 153 | 134 | 154 | 118 | 123 | 150 | 109 | | 72 | 118 | | | LDH Total (units) | 38 | 36 | 20 | 45 | 67 | 57 | 44 | 56 | 61 | 52 | | 64 | 63 | | | Distribution of Isoenzymes | v
d
E | | | | | | | | | | | | | | | | 36 | 29 | 32 | 35 | 28 | 3 | 28 | 27 | 17 | 33 | 77 | 33 | 35 | | | LDH-2 | 25 | 28 | 26 | 3 5 | 26 | 26 | 27 | ; [| ; ç | 20 | 0,0 | 0 0 | 3.5 | | | (%) LDH-3 | 26 | 31 | 32 | 24 | 5 2 | 27 | 27 | 22 | 35 | 24 | 27 | 2.5 | 25 | | | | 10 | 9 | e | Ŋ | 10 | 9 | 12 | 14 | 14 | 101 | 17 | ω | ĺν | | | LDH-5 | 2 | 7 | 3 | 5 | 10 | 7 | 9 | 80 | ∞ | 5 | 6 | 5 | 5 | | | Total Protein (Gm%) | σ | α | i | α | α | α | a | , | α | ۲ | 7 | ۲ | a | | | | י ר
מיר | ς
ας
α | 165 | 175 | 3,4 | 170 | 162 | 7, | 1 2 | 17.3 | 171 | , , | 0 1 | | | | 96 | 000 | 707 | 7 0 7 | 0 0 | 0 7 0 | COT | T07 | 7CT | 14.5 | TO 1 | † c | 150 | | | Lactate (mox) | 0 Y C | 0 0 | 70 | 33 | 0 0 | 900 | 0 0 | y c |) L | χ -
γ η | ל
ל | ט
מ
מ | T02 | | | tty Acio | | 17.33 | , , ,
, , | 50 | 77 | 22 | 77. | 67 | 3 | 7 | 1007 | C 0 | /1 | | | sterol | 233 | 220 | 194 | 253 | 239 | 226
226 | 743
218 | 213 | 219 | 200 | 1003
239 | 187 | 230 | | | Distribution of Neutral | Livids | | | | | | | | | | | | | | | | | 2 | 1 | ; | e | 7 | 2 | 2 | } | • | 2 | _ | 1 1 | | | Free Fatty Acids | 5 | 16 | 6 | ∞ | 10 | 7 | oc | ع ا | 7 | ισ | , <u>=</u> | ى ا | 1 | | | stero] | 15 | 2.3 | 21 | 20 | 28 | 21 | 5 | 200 | . 2 | , c | 1 5 | , <u>e</u> | 1 | | | Diglyceride | m | יי | ٠ ا | · ~ | · | ו
ומי | ì ~ |)
ו מי | , |) (| ì c | . | 1 | | | TG-CE | 77 | 46 | 89 | 69 | 56 | 67 | 69 | , 2 | 71 | 2
20 | 65 | 73 | 1 | | | | | | | | | | | | | | | | | ĺ | | Distribution of Phospholipids | itpids | | | | | | | | | | | | | | | LPC | 12 | ∞ | 7 | œ | 6 | 10 | œ | 11 | 10 | 7 | 7 | 00 | 11 | | | SPH | 22 | 18 | 16 | 19 | 16 | 14 | 21 | 20 | 19 | 21 | 21 | 19 | 9.0 | | | PC | 51 | 20 | 54 | 94 | 55 | 50 | 50 | 57 | 63 |
51 | 52 | 53 | 20 | | | (%) PI | ٣ | ; | ന | 6 | ر
در | 7 | , rv | 2 | : | 9 | . ∞ | } | 2.5 | | | H.d. | σ | 17 | 14 | 15 | 13 | 17 | 14 | 10 | 6 | 9 | 10 | 16 | 10 | | | PG | !
! | 9 | 7 | ļ | 7 | 1 | ! | ! | . ! | |)
 | ì | . | | | CA | 7 | i | 7 | ٣ | 1 | Ś | ļ | ; | ţ | 1 4 | | ۱ (۲ | | | | PA | 1 | - | 3 | - | ., | . ! | 1 | ł | į
į | - ო | : 1 | ,] | ļ | | | , | , | | | | | | | | | | | | | 1 | | Distribution of Lipoproteins | teins | 4 | | (| , | | 1 | , | , | | | | | | | | 87 | 30 | 54 | 32 | 23 | 24 | 2.5 | 25 | 22 | 33 | 23 | 31 | 22 | | | (%) PRE-BETA | 47 | 32 | 38 | 38 | 31 | 28 | 41 | 31 | 31 | 77 | 30 | 28 | 77 | | | BETA | 35 | 39 | 37 | 31 | 97 | 47 | 34 | 77 | 87 | 23 | 41 | 42 | 34 | ĺ | | | | | | | | | | | | | | | | | | Lewis | 1 | |--------|---| | DIVER: | | THE PROPERTY OF O | CT NOW | | | | | | | | | | | | | | |--------------------------------|----------------|-------|------------|----------|--------|------|---------------|----------|--------|-------------|------|--------------|------------| | | | PRE | | , | ROTTOM | | <u> </u> | ECOMP | *ESSIO | 7 | | POST | | | RAMDI F | • | , | ٣ | | | | | oc | 0 00 | <u>-</u> | 11 | 12 | | | Determination DATE | 12-22 | 12-29 | 16 | 17 | 110 | 1-14 | 1-15 | 1-18 | 1-20 | 1-22 | 1-23 | 1-26 | 1-30 | | CPK (units) | 23 | 33 | 28 | 26 | 67 | 36 | 28 | 18 | 1 | 1 | 30 | 29 | 32 | | | 80 | 36 | 72 | 153 | 124 | 127 | 100 | 104 | 1 | 1 | 136 | 118 | 100 | | LDH Total (units) | 50 | 3, | -55 | 59 | 37 | 87 | 51 | 99 | | | 79 | 84 | 57 | | | | | | | | | | | | | | | | | Distribution of Isoenzymes | zymes | : | (| ć | ć | ć | ı | 0 | | | ç | 9 | 36 | | ייייי ל | 28 | 40 | 78 | 59 | 7.7 | 53 | 57 | × 1 | : | ! | 77 | , t | 2 8 | | | 33 | 28 | 31 | 31 | 56 | 31 | 32 | 35 | 1 | ! | 32 | , | <u>م</u> ہ | | (%) LDH-3 | 29 | 18 | 31 | ဓင္က | 33 | 27 | 27 | 58
78 | i | : | 53 | ž, | Ç , | | LDH -4 | ∞ | 10 | 7 | 2 | 7 | 10 | 10 | 12 | 1 | i
i | 10 | σ, | ∞ ~ | | LDH-5 | 9 | 4 | 4 | 2 | 12 | 4 | g |
 | 1 | Į. | Ø | 4 | 4 | | Total Drotein (Cm%) | c | r | c | c | o | o | 0 | a | ! | ļ | ٢ | 7 | 7 | | TOTAL FLOCETII (Siim) | œ | | œ | ָ
ועס | o ! | 0 | 1
!
0 1 | 0 . | !
! | | , | 7 . | , , , | | Haptogiobin (mg%) 143 | 143 | 156 | 158 | 154 | 177 | 178 | 175 | 193 | 1 | ! | 7.2 | 110 | 104 | | Gincose (mg%) | 96 | 101 | 117 | 86 | 109 | 92 | 97 | 86 | ! | 1 | 140 | 770 | TO4 | | Lactate (mg%) | 17 | 56 | 25 | 33 | 78 | 34 | 28 | 33 | 1 | ! | 25 | 77 | C7 | | Free Fatty Acids (umo) | 1/17224 | 1638 | 1035 | 888 | 889 | 805 | 869 | 574 | ! | ! | 713 | 8/9 | 720 | | CHOTES LETOT | 236 | 240 | 778 | 312 | 303 | 719 | 417 | 557 | | | 979 | 7,7 | 673 | | Distribution of Neutral Lipids | cal Lipic | 1s | | | | | | | | | | | | | Monoglyceride | ,
1 | - | 0 | - | 6 | 2 | 2 | : | i | 1 | 7 | 7 | က | | Free Fatty Acids | ! | 13 | 10 | i ∞ | - ^ | 10 | 10 | <u>:</u> | ì | : | 6 | ъ | 7 | | (%) Cholesterol | ļ, | 26 | 21 | 22 | 22 | 15 | 20 | ; | : | ! | 23 | 17 | 17 | | Diglyceride | ; | 7 | 7 | m | m | 2 | က | : | : | ; | | 7 | - | | TG-CE | | 56 | 62 | 99 | 67 | 79 | 65 | | ! | 1 | 65 | 25 | . 77 | | Distribution of Phosp | Phospholipids | re | | | | | | | | | | | | | | ' α | 1 | v | 4 | œ | 00 | 6 | 1 | į | 1 | 9 | 9 | 10 | | HdS | , c | 1 | 7 . | 18 | 20 | 17 | 18 | ! | i | ; | 21 | 18 | 23 | | PC | 59 | | 52 | 74 | 58 | 58 | 28 | ţ | 1 | ! | 53 | 9 | 26 | | (%) PI | l m | 1 | ıŊ | 5 | 2 | 1 | 'n | 1 | ! | ٠
•
• | Ŋ | į | ! | | THE CH | 7.5 | 1 | 12 | 15 | 10 | œ | 10 | ; | 1 | ; | Ξ | 14 | σ | | PG | 1 | ; | 7 | Ŋ | ! | ! | ! | į | : | 9 | 1 | - | • | | CA | ì | į | 7 | ٣ | m | 9 | [| ! | į | ; | m | 7 | 7 | | PA | 1 | 1 | 2 | i | : | 1 | • | i | | 1 | *** | | | | | • | | | | | | | | | | | | | | Distribution of Lipoprotellis | proteils | 7.6 | 20 | 23 | 18 | 20 | 30 | 30 | 1 | • | 26 | 30 | 24 | | (%) PRE BRTA | 3 5 | 36 | 1 /
7. | 7 7 | 2.7 | 27 | 33 | 33 | 4 | ! | 32 | 77 | 32 | | | 41
23 | 2 0 | ታ ሩ
ፓ ፕ | 2 40 | ှ င | , v | 3 6 | 37 | . ; | ; | 42 | 27 | 44 | | Midd | | 200 | | 34 | | 7.5 | | ,,, | - | | | | | | DIVER: Roan | | | | | | | | | | | | | | |--------------------------------------|-------------------|-------------------|-----------|-----------|-----------|-----------|-----------|---------------|-----------|------------|-----------------|------------|---------------| | | | PRE | | | CTTOM | | | DECOMPRESSION | RESSIO | | | POST | | | SAMPLE Netermination DATE | $\frac{1}{12-22}$ | $\frac{2}{12-29}$ | 3
1-6 | | 5
1-10 | | 7 | 8
1-18 | 9
1-20 | | 11 | 12
1-26 | 13
1-20 | | 'C | 31 | 45 | 38 | 1 | 266 | 1 | 33 | 47 | 40 | 38 | 49 | 65 | 35 | | Amylase (units)
LDH Total (units) | 50
54 | 152
47 | 160
75 | 134
75 | 186
86 | 181
79 | 127
56 | 183 | 178
84 | 136
72 | 192
83 | 101
69 | 136
73 | | Distribution of Isoenzymes | vmes | | | 1 | | | | | | | †

 | | | | | 34 | 35 | 35 | 32 | 25 | 33 | 28 | 26 | 15 | 25 | 21 | 25 | 30 | | LDH~2 | 31 | 27 | 32 | 27 | 28 | 30 | 31 | 31 | 35 | 29 | 30 | 29 | 36 | | (%) LDH-3 | 30 | 56 | 23 | 27 | 29 | 28 | 27 | 30 | 31 | 27 | 27 | 30 | 24 | | LDH-4 | က | 7 | 2 | 6 | 10 | 7 | œ | 10 | 1 | 10 | 10 | 9 | 7 | | LDH-5 | 2 | 9 | 5 | 5 | 6 | 2 | 9 | 4 | 10 | 6 | 12 | 10 | 2 | | Total Protein (Gm%) | 7 | 7 | 1~ | 7 | ∞ | 7 | 00 | œ | 7 | 00 | 7 | 7 | ì | | lobin | 06 | 104 | 115 | 90 | 116 | 121 | 104 | 115 | 118 | 111 | 107 | 104 | 118 | | | 85 | 103 | 26 | 85 | 77 | 92 | 92 | 90 | 91 | 88 | 104 | 97 | 100 | | Lactate (mg%) | 18 | 16 | 19 | 32 | 30 | 27 | 26 | 31 | 20 | 18 | 28 | 18 | 24 | | Aci | _ | 1640 | 940 | 1082 | 1005 | 989 | 247 | 826 | 1 | 1217 | 1388 | 1160 | į | | Cholesterol (mg%) | 150 | 195 | 211 | 246 | 262 | 215 | 211 | 231 | 260 | 286 | 314 | 247 | 278 | | Distribution of Neutral | 1 Lipids | | | | | | | | | | | | | | Monoglyceride | | ì | 1 | i | 2 | 3 | 7 | 7 | 7 | | 2 | - | က | | | ! | 15 | 11 | 6 | 14 | 15 | 0, | ∞ | 7 | 12 | 15 | ∞ | 5 | | (%) Cholesterol | ; | 16 | 19 | 23 | 56 | 21 | 16 | 18 | 21 | 17 | 22 | 19 | 16 | | Diglyceride | 1 | 7 | 5 | 5 | 7 | 9 | 7 | က | 7 | 7 | 7 | ႕ | 2 | | TG/CE | | 89 | 89 | 99 | 56 | 55 | 69 | 89 | 89 | 69 | 09 | 71 | 73 | | Distribution of Phosph | Phospholipids | | | | | | | | | | | | | | LPC | , 1
, 1 | ļ | ٠ | 7 | [| 10 | 0 | o | α | ď | ď | α | 7 | | hids | ; | i | 91 | 21 | 8 | 19 | 2 2 | , - | 17 | , c | , 60 | 9 5 | , | | PC | ! | 1 | 87 | 26 | 54 | 28 | 26 | 62 | 65 |) [5 | ٠
د | , <u>c</u> | 20 | | (%) PI | ; | ļ | 7 | ี่เก | . m | . ~ | 4 | l
m | } | | 7 | } } | \
\
(*) | | PE | ! | 1 | 12 | 2 | 11 | 0 | σ | 10 | 6 | ^ | ۰ م | 12 | · ~ | | PG | 3 | ! | 12 | ! | H | ļ | 1 | 1 | 7 | Н | - | i | ! | | CA | 1 | 1 | ¦ | ! | 7 | ٣ | ო | ł | 1 | 4 | ო | 7 | 2 | | PA | | 1 | 2 | - | ! | - | • | - | 1 | 5 | ! | 1 | | | Distribution of Linouroteins | oteins | | | | | | | | | | | | | | ALPHA | 67 | 35 | 33 | 37 | 33 | 31 | 37 | 30 | 31 | 70 | ر
د
د | 33 | 36 | | (%) PRE-BETA | 12 | 22 | 28 | <u>)</u> | 3 = | 17 | 20 | 2 8 | - T | 240 | 7: | 7 6 | 5.
5. | | | 36 | 28 | 42 | 77 | 57 | 52 | 43 | 42 | 5.
7. | 36 | 45 | 0 8 | 7 0 7 | | | | 2 | 3 | | | 1 | , | 1 | 3 | 3 | | 2 | 42 | THE PARTY OF P services a common securities of the common section of the section of the | DIVER: Larrimore | | | | | | | | | | | | | ١ | |--------------------------------|---------------|-----------|------------|-------|------------|----------------|------------|------------------|----------------|----------------|--------------------|----------------|---| | | | DD F | | p. | OTTOM | | | DECOMPI | RESSION | | POST | T | | | SAMPLE | ן | 5 | e (| 4 0 | יט נ
ת | 6 61 | | 8 | 9
12–15 | 10
12-17 | $\frac{11}{12-19}$ | 12
12-22 | | | Determination DATE (PK (units) | 35 | 33 | 45 | 52 | 82 | 80 | 1 | 26 | 31 | 46 | 34 | 15 | ١ | | Amylase (units) | 1 0 | 160 | 96 | 88 | 26
46 | 74 | 100
63 | 6
6
7
9 | 90 74
64 62 | 115
79 | 128
54 | 53 | ļ | | LDH Total (unites) | 47 | 3 | 75 | | | | 1 | | | | | | | | Pistribution of Isoenzymes | zymes | ò | ć | oc | 00 | 23 | 20 | 22 | 31 | 26 | 31 | 28 | | | LDH-1 | 29 | 5.
2.0 | 70 | ရှိ ရ | 2 5 | 50 | 2,4 | 3 00 | 5 6 | 36 | 32 | 34 | | | | 30 | 29 | 32 | 73 | 25
7.0 | ب
ا | † č | 3 6 | 28 | 8
7
8 | 52 | 25 | | | (%) LDH-3 | સ ′ | /7 | C7 | 70 | , 0 | 7 4 | , r | 4 |)
 00 | ် က | 7 | œ | | | LDH-4
1 DH-5 | ۶ ۵ | 77 | | 4 | 'n | 7 | 5 | 3 | | 5 | 4 | 4 | ١ | | 0-1101 | | | | | 1 | | , | | ſ | r | ٢ | Ļ | | | Total Protein (Gm%) | 9 | 7 | 7 | 7 | | 7 | 9 | 1 6 | 1 / | 7 - | 7 6 | 160 | | | Hartoglobin (mg%) | 158 | 166 | 166 | 185 | | 204 | 240 | 193 | 7/7 | 727 8 | 0 0 0
0 0 | 0 0 | | | | 96 | 100 | 66 | 93 | | 94 | 98 | 96 | | φ , | יי
ער | 10 | | | | 16 | 13 | 14 | 27 | | 20 | 18 | 16 | 21 | 12 | 17. | 1635 | | | ttv Acids(umol, | /L)1390 | 1326 | 863 | 1014 | 896 | 1198 | 1308 | 529 | 11/3 | 1/35 | 120 | 175 | | | sterol | 167 | 209 | 213 | 208 | | 197 | 179 | 163 | 126 | 27 | 1/3 | 2/1 | ļ | | | | | | | | | | | | | | | | | Distribution of Neutral Lipids | al Lipi | ds | , | c | | - | | c | _ | ! | - | - | | | Monoglyceride | 7 | н, | ⊣ (| 7 . | 1 | ,
, | ! | 1 r | - 7 | 01 | 1 40 | 1 00 | | | Free Fatty Acids | I | ኅ : | ∞ (| 27 | ! |) r | | , - | ٠ - | 17 | 6 | 20 | | | (%) Cholesterol | 17 | 19 | 18 | ¦ | 1 | ۹, | !!! | ì | } | i | 2 (| i 71 | | | Diglyceride | 1 | 7 | 7 | 7 | 1
1 | 7 | ì | 4 t | 1 1 | . 62 | 7.2 | 89 | | | TG/CE | 67 | 72 | 71 | ! | | 69 | - | 2) | 0, | 7, | * | | | | Distribution of Phost | Phospholipids | Ø | | | | | | | | , | , | ć | | | l
) | 11. | œ | 11 | 10 | ∞ | 7 | 7 | œ | ∞ | o, | ٥ | د | | | Has | 26 | 22 | 21 | 22 | 23 | 22 | 22 | 22 | 17 | 21 | 23 | 57 | | | | 50 | 54 | 87 | 29 | 55 | 55 | 54 | 94 | 45 | 51 | 56 | φ.
Σ | | | 51
1d (%) | , « | | 7 | 6 | ļ | 4 | 1 | 'n | ; | 4 | m (| ; | |
| | 6 | 7 | 13 | ; | 12 | 12 | 11 | œ | 2 | 12 | 12 | † , | | | 1 0 | . | ŀ | 1 | 1 | ! | ! | 7 | i | 1 | l
l | ! | ⊣ • | | | 0 < | i | ! | 1 | 1 | 1 | ! | 'n | 9 | ! | 1 | : | 2 | | | φ.
Δ | ~ | m | ļ | 1 | 7 | ; | - | 5 | 1 | ۳ | 1 | 2 | | | 4.6 | | | | | | | | | | | | | | | Distribution of Lipoproteins | proteins | | | | ; | ; | ć | ; | Č | ć | 27 | 33 | | | ALPHA | 19 | 33 | 41 | 31 | 24 | $\frac{21}{1}$ | 70 | † t | 17 | 770 | 70 | 4 6 | | | (%) PRE-BETA | 37 | 45 | 32 | 32 | 31 | ၉ : | 7 0 | /7 | ς, | 0 0 | † 0 | o a | | | | 777 | 22 | 27 | 38 | 46 | 67 | 32 | 00 | 44 | 2 | 22 | S | | | | | | | | | | | | | | | | | | DIVER: Gray | | | | | | | | | | | |-------------------------------|-------------------|-------------------|------------------------|-----------|--------------------|-----------|------------|---------------|---------------------|-------------| | | | PRE | | | BOTTOM | | | DECOMPRESSION | SSION | | | SAMPLE Determination DATE | $\frac{1}{11-24}$ | $\frac{2}{11-26}$ | 3
12 - 1 | 4
12-2 | 5
12 - 5 | 6
12–9 | 7
12–13 | 8
12-13 | 9
12 - 15 | 10
12-17 | | CPK (units) | ' | 14 | 19 | 29 | 989 | 1 | 72 | 24 | 29 | 19 | | Amylase (units) | i | 120 | 122 | 104 | 26 | | 79 | 86 | 145 | 133 | | LDH Total (units) | 94 | 50 | 49 | 56 | 88 | - 1 | 53 | 56 | 49 | 20 | | Diotal but do of Toosa | | | | | | | | | , | | | Distibution of isoenzym | symes
24 | 25 | 23 | ; | 22 | 18 | 23 | 25 | 53 | 28 | | LDH-2 | 29 | 25 | 37 | 1 | 26 | 29 | 33 | 37 | 5 6 | 33 | | (%) LDH-3 | 36 | 33 | 34 | 1 | 35 | 39 | 56 | 27 | 32 | 5 6 | | | œ | 11 | ł | ł | 11 | 11 | σ | 9 | σ | σ | | LDH-5 | 3 | 7 | 9 | 1 | 9 | 2 | 6 | 9 | 4 | 4 | | Total Protein (Gm%) | 7 | 7 | 7 | 7 | 7 | 7 | 9 | ļ | 7 | 7 | | | 162 | 146 | 131 | 185 | 184 | 172 | 183 | 218 | 161 | 143 | | Glucose (mg%) | 112 | 111 | 86 | 107 | 66 | 102 | 83 | 66 | 91 | 96 | | (mg%) | 13 | 11 | 14 | 32 | 15 | 16 | 14 | 14 | 17 | 13 | | Acids (umol, | /L)954 | 1691 | 1253 | 880 | 1050 | 653 | 919 | 1095 | 799 | 1207 | | Cholesterol (mg%) | 193 | 255 | 250 | 234 | 207 | 223 | 189 | 188 | 178 | 20 | | Distribution of Neutral | | | | | | | | | | | | Monoglyceride | 5 | ; | - | 1 | н | က | 7 | 7 | 7 | ł | | Free Fatty Acids | 6 | 11 | 4 | 10 | 6 | 9 | Ŋ | ហ | 4 | 7 | | (%) Cholesterol | 20 | • | 19 | 1 | 27 | 20 | 25 | 18 | 19 | 70 | | Diglyceride | ო | ! | 2 | ! | | ! | 2 | ო | ∺ | 7 | | TG/CE | 99 | 1 | 75 | 1 | 61 | 17 | 67 | 73 | 75 | 71 | | Distribution of Phospholipids | holibids | | | | | | | | | | | 7 | 1,7 | | α | ł | œ | 21 | œ | 7 | œ | œ | | HdS | 78 E | 21 | . ! | ; | 21 | 26 | 23 | 24 | 19 | 21 | | PC | 67 | | ; | 77 | 99 | Ŋ | 26 | 42 | 54 | 52 | | Id \%/ | 7 | | ! | 7 | 1 | 14 | ļ | σ | 4 | ; | | PE | 7 | | 11 | 10 | S | 7 | σ | 10 | 10 | 11 | | PG | ; | | ! | 1 | ; | ო | | 2 | ¦ | ო | | CA | ! | | 4 | 1 | ł | ! | 7 | 4 | ო | ო | | PA | 2 | - 1 | | 1 | | | 1 | 2 | | 2 | 11111 | | | | | | | | 1 | | 26 34 39 20 20 60 23 25 53 35 25 40 34 18 49 25 20 55 27 25 49 37 23 40 27 35 39 Distribution of Lipoproteins ALPHA (%) PRE-BETA 30 BETA 56 1 | 1 | 1 | 1 | 1 1 1 1 1 | | | | DIVER: Miller | | | | | | | | | | | | | 1 | |------------------------------------|---------------|------------|-----------|-----------|-----------|------------|-----------|------------|---------------|------|----------------|-------------|---| | | • | PRE | • | | BOTTOM | | | DECOMP | DECOMPRESSION | | FOST | | | | SAMPLE
Determination DATE | 11-24 | 2
11–26 | 3
12-1 | 4
12–2 | 5
12-5 | 6
12–9 | 7 | 8
12–13 | 9
12–15 | 10 | 11 | 12
12–22 | | | mits) | 30 | 35 | 8 | 42 | 1 | 175 | 54 | 40 | 21 | 29 | 1 | 26 | ł | | | ! | 140 | 131 | 72 | 1 | 93 | 112 | 107 | 150 | 150 | ł | 120 | | | LDH Total (units) | 52 | 61 | 58 | 09 | 1 | 81 | 92 | 59 | 28 | 62 | 1 | 59 | | | Distribution of Toose | | | | | | | | | | | | | 1 | | DISCIPLING OF ISOSHEYMES | symes
21 | 00 | c | ć | | ò | č | č | ì | (| | : | | | T-ugri | 17 | 75 | 77 | 87 | ! | 74 | 74 | 76 | 76 | 32 | 1
1 | 49 | | | | 38 | 28 | 32 | 25 | 1 | 33 | 33 | 42 | 34 | 35 | ł | 33 | | | (X) LDH-3 | 33 | 27 | 26 | 9 | ! | 33 | 30 | 41 | 28 | 23 | 1 | 10 | | | LDH-4 | œ | 12 | 21 | 13 | 1 | 7 | ø | σ | 6 | 7 | ; | ្រំ | | | LDH-5 | 9 | 1 | 1 | 4 | ļ | ٣ | Ŋ | | 7 | · m | ļ | 4 | | | ** | | | | | | | | | | | | | 1 | | Total Protein (Gm%) | 7 | œ | 1 | 7 | 1 | 7 | 7 | ; | 7 | α | ; | OS. | | | Haptoglobin (mg%) | 166 | 166 | 166 | 204 | ! | 179 | 229 | 211 | 200 | 175 | 1 | 170 | | | | 125 | 123 | 107 | 11. | 1 | 101 |) C | 100 | 200 | 1 0 | | 2 6 | | | | <u>1</u> | 17 | 1 1 | 200 | 1 | 727 | 200 | 0 1 | y c | 0 c | | ט
ה | | | ttv | /L)017 | 1663 | 1109 | 1660 | } | 1026 | 1364 | 10/5 | 1600 | 128. | | 0671 | | | Cholesterol (mg%) 210 | 210 | 221 | 204 | 195 | ! | 204 | 172 | 168 | 169 | 167 | | 181 | | | | | | | | | | | | | | | | 1 | | Dist: Lbution of Neutral | 1 Lipids | ro. | | | | | | | | | | | | | Monoglyceride | 7 | ! | | 7 | 1 | -1 | -1 | 2 | 7 | 7 | 1 | ! | | | | 9 | 1 | 2 | 6 | 1 | 7 | 10 | 7 | 7 | 17 | Ŋ | } | | | (%) Cholesterol | 23 | 1 | 13 | 20 | ! | 17 | 17 | 17 | 16 | 21 | 17 | ł | | | Diglyceride | 7 | ŀ | Н | m | ŧ | 1 | 2 | 7 | 2 | - | ہ ن | 1 | | | TG/CE | 29 | | 31 | 89 | 1 | 72 | . 2 | . 2 | 72 | 89 | <u>.</u>
92 | i | | | 4 | • | | | | | | | | | | | | 1 | | neron er | rnospnolipids | , | | | | | | | | | | | | | LPC | 9 | σ | 10 | ω | 1 | œ | 7 | œ | 10 | 10 | 10 | ; | | | SPH | 20 | 24 | 24 | 25 | ! | 20 | 20 | 21 | 24 | 25 | 22 | ! | | | | 51 | 54 | 53 | 48 | 1 | 58 | 54 | 49 | 51 | 58 | 54 | ! | | | (%) PI | 9 | 2 | ! | œ | ł | 1 | S | m | ! | ! | ന | i | | | PE | 11 | 7 | 11 | I | 1 | 13 | 13 | 10 | 6 | 7 | 11 | 1 | | | PG | ٣ | ! | 1 | 1 | ł | ; | 1 | ! | 1 | 1 | 1 | 1 | | | CA | 1 | ļ | ო | ł | ł | 7 | | 7 | 'n | ! | 1 | ; | | | PA | - | - | 1 | ! | - | 1 | | 3 | ! | ł | 7 | ! | | | Distribution of Items | 4 | | | | | | | | | | | | Į | | Distribution of Lipoproteins ALPHA | oreins
22 | 70 | 36 | 33 | ł | 76 | 2,2 | 90 | o c | 7,0 | ! | ç | | | (%) PRE-BETA | 27 | 25 | 3 5 | 2,5 | | † %
† % | ۲ ر.
د | 23 | 9 C | t c | 1 | 77 | | | | 51 | 36 | 33 | 41 | | 2 00 | 0 T 4 | 7 87 | 5 7
7 | 07 | <u> </u> | 36 | | | | | | | | | , | | 2 | Į. | > | | 5 | 1 | # APPER VIX D Individual Summaries of Serum Biochemistries for 1000 FSW Saturation Dive DIVER: Alexander | SAMPLE | DATE | CPK
units | LDH | AMYLASE
units | SGOT | ALK
PHOS
units | HAPTO-
GLOBIN
mg% | GLU-
COSE
mg% | LAC-
TATE
mg% | CHOLES-
TEROL
mg% | LDH
5 4 4 | | OH ISOENZYMES 4 3 2 distribution | 1 . 1 | 1 | |---|--|--|--|--|--|--|---|--|---|---|-----------------|---|--|--|--| | Pre 1 2 3 | 6/2/70
6/8/70
6/15/70
6/22/70 | 34
44
31
40 | 65
58
48
44 | 136
53
104
131 | 40
27
45 | 1.9
2.1
2.0
1.8 | 73
83
92
90 | 98
87
103
110 | 12
14
13
12 | 200
196
170
230 | 9 4 7 7 | 1420 | 33
33
33 | 33 33 | 19
28
30 | | Bottom 5 6 7 8 8 9 9 10 111 112 113 114 114 114 115 115 115 115 115 115 115 | 5/24/70
6/25/70
6/27/70
6/28/70
6/30/70
7/1/70
7/4/70
7/4/70
7/4/70
7/11/70
7/11/70
7/11/70 | 31
33
33
33
33
33
33
19
19
48
48
27
27
26 | 42
49
60
67
57
57
50
60
53
53 | 14.5
100
144
163
133
172
172
127
80
134
134
139 | 40
29
37
44
37
23
35
27
26
26 | 1.8
1.7
2.1
2.2
2.2
2.3
2.4
2.3 |
130
141
108
75
86
91
106
97
87

140 | 104
106
86
89
106
104
112
108
108
106
93 | 12
14
14
15
23
23
34
31
25
17
9 | 173
162
192
190
210
186
175
188
198
198
197 | 1128241242 8112 | 1 1 W 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 442
332
34
441
447
447
447 | 222
222
224
227
227
233
333
233
233
233 | 29
29
29
20
29
29
30 | | Post 19 | 7/22/70 | 29
18 | 51 42 | 114 | 33 22 | 2.5 | 159 | 103
100 | 9 | 187
176 | 46 | 13 | 22
53 | 21
16 | 41
29 | DIVER: Brown | CHOLES- LDH ISOENZYMES TEROL 5 4 3 2 1 mg% % distribution | 189 5 4 38 33 20
207 3 1 27 35 34
203 2 2 41 31 24
206 2 5 31 36 27 | 210 | 162 7 9 34 25 25
165 2 0 52 19 28 | |---|--|--|--------------------------------------| | LAC- C
TATE 1 | | 32
27
21
27
19
37
30
47
49
49
28
33
13 | 31
23 | | GLU-
COSE
mg% | 89
98
10 <i>7</i> | 103
112
91
92
112
96
105
105
109
112
100 |
104
100 | | HAPTO-
GLOBIN
mg% | 173
213
239
167 | 225
249
249
216
194
195
209
208
179
194
194
262
311 | 252
273 | | ALK
PHOS
units | 1.3
1.5
1.5 | 1,2
1,1
1,3
1,3
1,1
2,3
1,4
1,4
1,4
1,5 | 2.6
1.0 | | SGOT | 30
20
37 | 46
22
26
35
33
33
34
44
44
19
19
20
20
22 | 23
26 | | AMYLASE
units | 145
98
114
169 | 145
127
200
163
169
133
163
90
110
143
120 | 160
133 | | LDH
units | 56
54
51
46 | 51
44
64
64
65
67
56
70
63
53
49
52 | 57
42 | | CPK
units | 12
29
19
20 | 51
42
42
44
44
53
53
70
70
70
70
70
70
70
70
70
70
70
70
70 | 29 | | DATE | 6 2 70
6/8/70
6/15/70
6/22,70 | 6/2-/70
6/25/70
6/27/70
6/28/70
6/30/70
7/11/70
7/6/70
7/6/70
7/11/70
7/11/70
7/11/70 | 7/22,70
7/27,70 | | SAMPLE | Pre 1 3 3 | Bottom 5
6
7
8
9
10
11
12
13
14
Decomp
15
16
17 | Post 19
20 | DIVER: Guzicki | | កូទ្ធកូន | 22 22 33 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 6 9 | |-------------------------|--|--|---------------| | ES 1 | 0000 | | 7 7 | | NZYM
ut 30 | 23
30
28 | 25
23
32
33
30
30
30
28
28
28
28 | 27 24 | | DH ISOENZYMES | 49
42
38 | 252
332
332
340
351
351
351
351
351
351
351
351
351
351 | 36
48 | | LDH 4 | 0440 | 1 1 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 00 | | 5 | 6241 | 118044444 0804 | 77 | | CHOLES-
TEROL
mg% | 169
242
218
226 | 207
228
213
215
216
216
217
218
208
201
192 | 200 | | LAC-
TATE | 15
12
15
12 | 16
119
113
224
28
29
29
29
10
10 | 11
33 | | GLU-
COSE
mg% | 87
114
100
104 | 97
98
83
102
103
90
89 | 97 | | HAPTO-
GLOBIN
mg% | 154
211
189
152 | 223
223
235
235
207
189
202
202
202
202
202
211 | 257
254 | | ALK
PHOS
units | 1.2 | 1.1
1.3
1.3
1.6
1.6
1.5 | 1.7 | | SGOT | 34

30 | 39
19
24
30
27
27
22
22
22
22 | 25
20 | | AMYLASE
units | 145
80
57
122 | 127
136
136
163
142
71
145
118
80
126
126
139
131 | 114 205 | | LDH
units | 59
41
44
35 | 54
44
65
64
64
66
64
65
65
65
65
65
65
65
65
65
65
65
65
65 | 57
39 | | CPK
units | 21
25
38
33 | 30
35
32
32
32
32
32
32
32
32
32
32
32
32
32 | 37 | | DATE | 6/2/70
6/8/70
6/15/70
6/22/70 | 6/24/70
6/25/70
6/27/70
6/28/70
6/30/70
7/1/70
7/4/70
7/6/70
7/11/70
7/11/70
7/11/70 | 7/22/70 | | SAMPLE | Pre 1 3 3 | Bottom 5 6 7 7 8 9 10 11 12 13 14 Decomp 15 16 17 | Post 19
20 | DIVER: Majendia | ي
1 | 31
25
24 | 31 31 27 | 27
25
25
27 | 29 | |-------------------------------------|--|---|--|---------------| | ZYME
2
1 Cop | 1 % 8 % 8 8 8 8 | 33 27 33 31 31 31 31 31 31 31 31 31 31 31 31 | 34
36
23
22 | 102 | | LDH ISOENZYMES 4 3 2 1 distribution | 35 | 33 33 33 34 34 34 34 34 34 34 34 34 | 34
47
46 | 105 | | LDH 4 | 1494 | 11444411010 | 4 N M 4 | | | 0 % | 1984 | 1100401614 | песн | 1.2 | | CHOLES-
TEROL | 266
233
235 | 184
214
196
223
225
221
238
238
214
220 | 209
212
189
173 | 186 | | LAC-
TATE | 14
15
15 | 14
119
127
14
14
35
31
31
31
34 | 33
25
9
14 | 38 | | GLU-
COSE
mg% | 101
87
122 | 109
108
82
87
103
104
105
93 | 99
106
105
100 | 106 | | HAPTO-
GLOBIN
mg% | 209
158
168 | 151
156
202
223
223
169
131
139
133 | 129
130
182
196 | 253 | | ALK
PHOS
units | 1.2
1.9
1.3 | 1.2
1.2
1.3
1.4
1.4 | 1.6
1.6
1.5 | 1:1 | | SGOT | 38

65 | 53
31
38
57
41
40
29
37 | 28
26
29
29 | 1 % | | AMYLASE
units |
106
86
131 | 145
136
163
163
169
150
172
145
100 | 182
110
140
158 | 171 | | LDH
units | 50
63
50 | 43
50
56
65
75
79
68 | 70
58
51
55 | 54 | | CPK
units | 40
42
37 | 43
39
39
36
36
41 | 39

21
29 | 109 | | DATE | 6/2/70
6/8/70
6/15/70
6/22/70 | 6/24/70
6/25/70
6/28/70
6/28/70
6/30/70
7/1/70
7/4/70
7/6/70 | 7/11/70
7/14/7C
7/17/70
7/19/70 | 7/22/70 | | SAMPLE | Pre 1 2 3 4 | Bottom 5
6
7
8
8
9
10
11
12
13
14 | Decomp
15
16
17
18 | Post 19
20 | #### APPENDIX E # Summary of Clinical Findings - A. 300 FSW Saturation-Excursion Dive - No symptoms were reported by the divers during any phase of the dive. - B. 600 FSW Saturation-Excursion Dive - 1. No symptoms were reported during compression. - 2. Larrimore reported knee pain and gastrocnemius pain at the 185 foot stop. The pain was treated with oxygen but not with pressure. The pain was resolved by the fourth 30 minute exposure to 21% oxygen. - Wilson developed mumps on the second day of the dive. A complete report is presented elsewhere (6). - C. 1000 FSW Saturation Dive - 1. No problems were reported on compression. - 2. Alexander reported dull knee pain which first occurred at 400 feet. At 185 feet he was treated with oxygen with only slight improvement. The pain was completely resolved within 2 days after surfacing.